Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sang Ho Nam,^a Byeong Kwon Park,^a Cheal Kim^a* and Youngmee Kim^b*

^aDepartment of Fine Chemistry, Seoul National University of Technology, Seoul 139-743, South Korea, and ^bDivision of Nano Sciences, Ewha Women's University, Seoul 120-750, South Korea

Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

Key indicators

Single-crystal X-ray study T = 170 K Mean σ (C–C) = 0.003 Å R factor = 0.035 wR factor = 0.076 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4,5-Dimethyl-1,2-bis(quinoline-2-carboxamido)benzene

The molecule of the title compound [systematic name: N,N'-(4,5-dimethyl-o-phenylene)bis(quinoline-2-carboxamide), H₂Me₂bpq], C₂₈H₂₂N₄O₂, is twisted, with a dihedral angle of 54.48 (3)° between the two quinoline ring systems. Weak C-H···O hydrogen-bonding interactions generate a two-dimensional network.

Comment

Non-heme biomimetic iron complexes have been extensively studied due to their ability to mimic some functional properties of non-heme iron monooxygenases (Costas et al., 2004; Belda & Moberg, 2005). Although a number of iron complexes have been synthesized to carry out biomimetic olefin epoxidation and alkane hydroxylation using oxygendonating reagents such as hydrogen peroxide, tert-butyl hydroperoxide, *m*-chloroperbenzoic acid and iodosylbenzene (Rohde et al., 2003; Foster & Caradonna, 2003), only a few catalytic systems allow the selective oxidation of olefin and alkane to the corresponding products (Chen et al., 2002). Therefore, in order to develop further the functional models for mononuclear non-heme iron oxygenases, we synthesized and crystallized a new N₄-type tetradentate ligand, namely 4,5dimethyl-1,2-bis(quinoline-2-carboxamido)benzene (H₂Me₂bpq), (I).

The asymmetric unit of (I) contains a whole molecule. The benzene ring is nearly coplanar with one of the quinoline ring systems (atoms N1/C1–C9), having a dihedral angle of 6.99 (8)°. Due to steric hindrance, the two quinoline ring systems are twisted with respect to each other by a dihedral angle of 54.48 (3)° (Fig. 1). There are weak intramolecular C– $H \cdots O$ hydrogen-bond interactions (Table 1). Weak intermolecular C– $H \cdots O$ interactions, as described by Janaik & Scharmann (2003), are also present (Table 1). These weak hydrogen-bonding interactions generate a two-dimensional network (Fig. 2).

Received 14 February 2006 Accepted 22 February 2006

Acta Cryst. (2006). E62, o1189–o1191

All rights reserved

© 2006 International Union of Crystallography

Figure 1

A molecular view of H₂Me₂bpq with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Packing view showing the C-H···O hydrogen-bonding interactions (dashed lines) leading to a two-dimensional network. H atoms not involved in intermolecular interactions have been omitted for clarity.

Experimental

For the preparation of the title compound, a slightly modified version of the method of Kim et al. (2005) was used. To a stirred solution of quinaldic acid (1.73 g, 10 mmol) in pyridine (10 ml), a solution of 4,5dimethyl-1,2-phenylenediamine (0.68 g, 5 mmol) in pyridine (5 ml) was added dropwise. The solution was stirred for 15 min and triphenyl phosphite (2.62 ml, 10 mmol) was slowly added. The reaction mixture was warmed up to 393 K and the mixture stirred for 4 h. The volume of the solution was then reduced to 2 ml and it was kept in air. A pale-yellow precipitate formed and was filtered off. Crystallization from an aqueous solution afforded a pale-yellow powder, which was washed with ethanol. Pale-yellow crystals were obtained by slow evaporation of a dichloromethane-methanol solution (1:1) at room temperature.

Crystal data

$C_{28}H_{22}N_4O_2$	Z = 2
$M_r = 446.50$	$D_x = 1.346 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
$a = 7.7346 (10) \text{ Å}_{a}$	Cell parameters from 975
$b = 11.9127 (17) \text{\AA}$	reflections
c = 13.0732 (18) Å	$\theta = 2.8 - 24.1^{\circ}$
$\alpha = 105.682 \ (2)^{\circ}$	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 92.228 \ (3)^{\circ}$	T = 170 (2) K
$\gamma = 106.699 \ (2)^{\circ}$	Block, pale yellow
V = 1101.9 (3) Å ³	$0.25 \times 0.15 \times 0.10 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: none 6147 measured reflections 4222 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.076$ S = 0.964222 reflections 309 parameters H-atom parameters constrained 1789 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.042$ $\theta_{\rm max} = 26.0^{\circ}$ $h = -9 \rightarrow 8$ $k = -14 \rightarrow 14$ $l = -16 \rightarrow 10$

 $w = \left[\exp(5(\sin\theta/\lambda)^2)\right] / \left[\sigma^2(F_o^2) + \right]$ $(0.0127P)^2$] where P = $0.33333F_{o}^{2} + 0.66667F_{c}^{2}$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots N1$	0.88	2.16	2.625 (2)	112
$N3 - H3 \cdot \cdot \cdot N4$	0.88	2.28	2.682 (2)	108
C12−H12···O1	0.95	2.31	2.928 (2)	122
$C22-H22\cdots O1^{i}$	0.95	2.39	3.064 (2)	128
C5−H5···O2 ⁱⁱ	0.95	2.47	3.364 (2)	157
C8−H8···O2 ⁱⁱⁱ	0.95	2.54	3.389 (2)	149

Symmetry codes: (i) x, y, z + 1; (ii) x, y + 1, z; (iii) -x, -y + 1, -z + 1.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H = 0.95(aromatic) or 0.98 Å (CH₃) and N-H = 0.88 Å, and with U_{iso} (H) = $1.2_{eq}(C_{ar},N)$ or $1.5U_{eq}(C_{Me})$.

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Financial support from the Korea Research Foundation (grant No. 2002-070-C00053) and the Korean Science & Engineering Foundation [grant No. R01-2005-000-10490-0(2005)] is gratefully acknowledged.

References

Belda, O. & Moberg, C. (2005). Coord. Chem. Rev. 249, 727-740.

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, K., Costas, M. & Que, L. Jr (2002). J. Chem. Soc. Dalton Trans. pp. 672-679.

- Costas, M., Mehn, M. P., Jensen, M. P. & Que, L. Jr (2004). Chem. Rev. 104, 939–986.
- Foster, T. L. & Caradonna, J. P. (2003). J. Am. Chem. Soc. 125, 3678-3679.
- Janaik, C. & Scharmann, T. G. (2003). Polyhedron, 22, 1123-1133.
- Kim, Y.-J., Kim, C. & Kim, Y. (2005). Anal. Sci. 21, x23-x24.
- Rohde, J.-U., Bukowski, M. R. & Que, L. Jr (2003). Curr. Opin. Chem. Biol. 7, 674–682.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.